A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131.
نویسندگان
چکیده
BACKGROUND Escherichia coli O25b:H4-ST131 represents a predominant clone of multidrug-resistant uropathogens currently circulating worldwide in hospitals and the community. Urinary tract infections (UTIs) caused by E. coli ST131 are typically associated with limited treatment options and are often recurrent. METHODS Using established mouse models of acute and chronic UTI, we mapped the pathogenic trajectory of the reference E. coli ST131 UTI isolate, strain EC958. RESULTS We demonstrated that E. coli EC958 can invade bladder epithelial cells and form intracellular bacterial communities early during acute UTI. Moreover, E. coli EC958 persisted in the bladder and established chronic UTI. Prophylactic antibiotic administration failed to prevent E. coli EC958-mediated UTI. However, 1 oral dose of a small-molecular-weight compound that inhibits FimH, the type 1 fimbriae adhesin, significantly reduced bacterial colonization of the bladder and prevented acute UTI. Treatment of chronically infected mice with the same FimH inhibitor lowered their bladder bacterial burden by >1000-fold. CONCLUSIONS In this study, we provide novel insight into the pathogenic mechanisms used by the globally disseminated E. coli ST131 clone during acute and chronic UTI and establish the potential of FimH inhibitors as an alternative treatment against multidrug-resistant E. coli.
منابع مشابه
Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract.
Type 1 pili mediate binding, invasion, and biofilm formation of uropathogenic Escherichia coli (UPEC) in the host urothelium during urinary tract infection (UTI) via the adhesin FimH. In this study, we characterized the molecular basis of functional differences between FimH of the UPEC isolate UTI89 and the Klebsiella pneumoniae cystitis isolate TOP52. Type 1 pili characteristically mediate man...
متن کاملDifferential stability and trade-off effects of pathoadaptive mutations in the Escherichia coli FimH adhesin.
FimH is the tip adhesin of mannose-specific type 1 fimbriae of Escherichia coli, which are critical to the pathogenesis of urinary tract infections. Point FimH mutations increasing monomannose (1M)-specific uroepithelial adhesion are commonly found in uropathogenic strains of E. coli. Here, we demonstrate the emergence of a mixed population of clonally identical E. coli strains in the urine of ...
متن کاملVaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli.
Escherichia coli FimH adhesin mediates binding to the bladder mucosa. In mice, a FimH vaccine protects against bacterial challenge. In this study, 4 monkeys were inoculated with 100 microgram of FimCH adhesin-chaperone complex mixed with MF59 adjuvant, and 4 monkeys were given adjuvant only intramuscularly. After 2 doses (day 0 and week 4), a booster at 48 weeks elicited a strong IgG antibody r...
متن کاملComprehensive analysis of type 1 fimbriae regulation in fimB-null strains from the multidrug resistant Escherichia coli ST131 clone.
Uropathogenic Escherichia coli (UPEC) of sequence type 131 (ST131) are a pandemic multidrug resistant clone associated with urinary tract and bloodstream infections. Type 1 fimbriae, a major UPEC virulence factor, are essential for ST131 bladder colonization. The globally dominant sub-lineage of ST131 strains, clade C/H30-R, possess an ISEc55 insertion in the fimB gene that controls phase-varia...
متن کاملPositively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation.
Chaperone-usher pathway pili are a widespread family of extracellular, Gram-negative bacterial fibers with important roles in bacterial pathogenesis. Type 1 pili are important virulence factors in uropathogenic Escherichia coli (UPEC), which cause the majority of urinary tract infections (UTI). FimH, the type 1 adhesin, binds mannosylated glycoproteins on the surface of human and murine bladder...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of urology
دوره 192 1 شماره
صفحات -
تاریخ انتشار 2013